Energy and the 'shale revolution'

Presentation to the International Conference of Commercial Bank Economists

By Saul Eslake

Cape Town, South Africa 11th July 2013

Summary

- The 'shale revolution' demonstrates the power of human ingenuity combined with 'market forces' (price signals) to solve problems of scarcity
 - 'shale oil' (or, more strictly, 'tight oil') has trumped 'Peak Oil'
- To date, the 'shale revolution' has been a North American (and particularly a US) development scarcity
 - reflecting a combination of technological, infrastructure, market and legal factors
 - although many other countries have the potential to develop shale oil and gas
- The 'shale revolution' will bring significant benefits for the US economy
 - directly adding to production and employment
 - reducing net imports of energy (though suggestions that the US could gain complete 'energy independence' are far-fetched - especially in regard to petroleum)
 - enhancing the competitiveness of US manufacturing by lowering energy costs relative to other countries, boosting the 'onshoring' trend
 - lowering household energy costs and hence reducing inflation and boosting households' capacity to save, or spend on non-energy goods and services
- Over time, gas markets should become more globally integrated
 - currently, less than one-third of global gas production is traded, cf. almost two-thirds of global crude oil production
 - this could eventually see the gap between North American and Asian/European gas prices narrow
- Oil prices are likely to decline modestly over the next two years integrated
 - reflecting increased production from shale resources and slower growth in demand from emerging economies
 - Increasing use of gas in North American electricity generation is also putting downward pressure on thermal coal prices

Petroleum geology and engineering for economists

- 'Conventional' oil and gas are extracted from 'reservoirs' contained within 'porous' or 'permeable' rock formations, into which hydrocarbons (oil and/or gas) have migrated from their original organic sources (marine or terrestrial organic debris compacted at high pressures and temperatures by layers of overlying rocks) over millions of years
 - 'conventional' hydrocarbons are 'trapped' or sealed by a 'non-porous' or 'impermeable' layer of
 rock into a specific area which can be reached by a traditional vertically-drilled well; and once
 tapped, the oil or gas usually flows, at least initially, to the well-head without requiring further
 action
- 'Tight' (or 'unconventional') oil or gas, by contrast, are contained within 'impermeable' rock formations, usually having formed elsewhere and migrated to limestone or sandstone formations over millions of years
 - because the hydrocarbons are diffused within the rock formation rather than 'trapped' in one place, extraction can't be undertaken by conventional (vertical) drilling, but instead requires 'horizontal' drilling into the rock formation, usually in combination with 'fracking' (see below)
- 'Shale' oil or gas are a particular type of 'tight' oil or gas, found within organic-rich shale rocks in which the hydrocarbons originally formed (usually at greater depth than 'conventional' formations
- Coal bed methane' or 'coal seam gas' is extracted from coal deposits, which are usually much closer to the surface than 'tight' or 'shale' gas (or oil) formations
- 'Hydraulic fracturing' or 'fracking' refers to the injection under high pressure of water, chemicals and sand into 'tight' or 'shale' formations in order to open cracks (fractures) in the rock, thereby allowing hydrocarbons to flow into the well
 - the pressurized mixture causes the rock layer to crack, while the sand particles hold the resulting fissures open so that the gas or oil can flow up to the well

Sources: US Department of Energy Office of Fossil Energy and National Energy Technology Laboratory, Modern Shale Gas Development in the United States: A Primer (April 2009); US Energy Information Administration, What is shale gas and why is it important?, Energy in Brief (December 2012)

Differences between 'conventional', 'tight', 'shale' and 'coal bed methane' or 'coal seam' gas

Source: Western Australian Department of Petroleum and Mines, Gas Fact Sheet - Gas Resource Types.

A depiction of 'fracking'

Source: Edwin Dobb, 'The New Oil Landscape: The Promise and Risk of Fracking', National Geographic, Vol. 223, No. 3 (March 2013), pp. 48-49.

A short history of 'unconventional' hydrocarbon extraction

- The idea of extracting gas or oil from shale deposits is not new. Indeed the first producing natural gas well in the United States was from a shale deposit at Canadaway Creek in Fredonia (on the Lake Erie shore, in upstate New York) in 1821
- However, unconventional gas or oil extraction did not become commercially feasible until the development of 'fracking' and horizontal drilling
 - hydraulic fracturing was first tried experimentally by Stanolind Oil in Kansas in 1947, and patented by Haliburton in 1949. Other versions of hydraulic fracturing were also carried out in the Soviet Union in the early 1950s
 - the first application of high-volume (or 'massive') hydraulic fracturing was undertaken by Pan American Petroleum in Oklahoma in 1968
 - in the 1970s, spurred by concerns about declining US production from conventional sources, the US Government sponsored the Eastern Gas Shales Project (pilot demonstrations) and industry research through the Gas Research Institute
 - horizontal drilling was first attempted by Mitchell Energy in Texas in the late 1980s, using advances in drilling motor technology and in telemetry, culminating in the first successful application combined with 'fracking' in the Barnett Shale (in north-central Texas) in 1991 although large scale production did not commence there until 2000
- These technologies were not applied on a large scale until oil and gas prices moved substantially higher beginning in the middle of the first decade of the 21st century
 - since then, estimates of the amount of potentially recoverable 'unconventional' oil and gas reserves in the US have increased substantially
- Development of 'unconventional' oil and gas reserves has been more rapid in North America than elsewhere because of private ownership of sub-surface rights (in contrast to other countries where these belong to the state), the existence of large numbers of independent operators and contractors, pre-existing pipeline infrastructure, and the availability of water resources (for use in 'fracking'), as well as technological advances

Last year saw the largest increase in US oil production ever, and the biggest % increase in 72 years

Source: US Energy Information Administration crude oil production statistics; 'tight' oil production from EIA Annual Energy Outlook 2013.

'Unconventional' oil will account for over one-third of total US production over the next two decades

US oil production, by source

Source: US Energy Information Administration, Annual Energy Outlook 2013.

'Unconventional' gas will account for over 75% of total US production over the next two decades

US natural gas production, by source

Source: US Energy Information Administration, Annual Energy Outlook 2013.

Production forecasts have been revised up, while price forecasts have been revised down, since 2010

Sources: US Energy Information Administration, Annual Energy Outlooks, 2010-2013.

Location of major shale oil and gas 'plays' in the US

Source: US Energy Information Administration, Energy in Brief: What is shale gas and why is it important?, December 2012

North Dakota is now the second-largest onshore producer of crude oil in the US

Note: 'GoM' = Gulf of Mexico offshore. *Source*: US Energy Information Administration.

Gas production is picking up in a number of States, including some not traditionally large producers

Natural gas production, by State

Note: States depicted in this chart + Gulf of Mexico accounted for 79.4% of US production in 2011. Source: US Energy Information Administration.

Employment in oil & gas production and associated support services is rising strongly

Oil & gas employment vs

Employment in oil & gas extraction

Note: January 2008 was the most recent peak in total non-farm payroll employment. Source: US Bureau of Labor Statistics.

Natural gas prices have been trending lower since shale gas started to become widely available

Source: US Department of Energy.

Electricity generators are turning to gas, and that is helping to hold down electricity prices

generation % of total 100 90 80 70 60 50 40 30 -20 10 -0 00 01 02 03 04 05 06 07 08 09 10 11 12 Coal All other

Sources of US electricity

Average US electricity prices

Sources: US Energy Information Administration, Electric Power Monthly.

Shale also seems to be helping the US reduce its CO₂ emissions

CO₂ intensity US CO₂ emissions Tonnes of CO2 emissions per 2005 US\$1mn of GDP 6.6 \neg Bn tonnes 2.0 – US 1.8 EU 6.4 🗕 Japan 1.6 -×- China 6.2 Canada 1.4 Australia 6.0 1.2 5.8 1.0 0.8 5.6 0.6 5.4 0.4 5.2 0.2 5.0 0.0 98 00 02 04 06 90 92 94 96 08 10 12 90 92 94 96 98 00 02 04 06 08 10 12

Sources: BP, Statistical Review of World Energy 2013; IMF, World Economic Outlook database, April 2013.

Cheaper energy is (at the margin) helping to hold down inflation and reducing pressure on household budgets

The US is becoming less dependent on imported energy ...

Note: 1 exajoule = 1000 petajoules, 1 bn gigajoules = 1055 quadrillion BTU. *Source*: US Energy Information Administration.

... which is contributing to an improvement in the US trade balance (and hence to GDP growth)

Source: US Bureau of Economic Analysis (Balance of payments statistics).

However talk of US 'energy independence' is a pipedream

Natural gas

2000 2005 2010 2015 2020 2025 2030 2035 2040

6

4

2

0

-2

-4

-6

EJ

US net energy exports

Note: 'Other' energy exports are principally coal and electricity. Source: US Energy Information Administration, Annual Energy Outlook 2013.

Shale gas is also giving US gas users a significant competitive advantage vs other countries

Wholesale natural gas prices 20 -US\$ per GJ Japan (LNG delivered) UK Euro area Australia US

Note: Australian price is for Victoria only. Sources: IMF; Thomson Reuters Datastream; Australian Energy Market Operator.

Europe and North-East Asia are heavily reliant on imported natural gas

Trade in natural gas

Note: Numbers denote trade volumes in petajoules in 2012. Source: BP, Statistical Review of World Energy 2013.

US gas prices could eventually rise sharply if the US becomes a significant LNG exporter

US LNG exports

- Only 31% of total world natural gas production is traded internationally, cf. 64% of oil production
- Roughly 70% of total international trade in gas goes through pipelines and the other 30% is LNG (see next slide)
- The US exports 1.5trn cf (1700 PJ) of gas through pipelines (to Canada & Mexico)
- However LNG exports from the US require case-bycase approval from the Dept of Energy, and so far there is only permitted LNG exporter shipping about 30PJ annually
- Allowing for liquefaction and transport costs, US exporters could land LNG in North Asia at around US\$11-12.50/GJ, compared with the current prevailing price of US\$14-15/GJ
- The EIA forecasts that US LNG exports will rise to 430bn cf (460PJ) in 2017, and to over 1trn cf (1,060 PJ) by the mid-2020s
- Rapid growth in LNG exports could see domestic gas prices converge towards 'export parity' (excl liquefaction & transport costs) - which is one reason why there is a strong domestic constituency opposed to US LNG exports

There's plenty of shale oil and gas reserves elsewhere in the world

Source: US Energy Information Administration, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations Outside of the United States, June 2013, p. 5.

The top ten countries with technically recoverable shale oil and gas resources

Technically recoverable shale oil resources			Technically recoverable shale gas resources	
	Bn barrels		Trn cubic ft	Bn bbls of oil equivalent
Russia	75	US	1,161	221
US	58	China	1,115	212
China	32	Argentina	802	152
Argentina	27	Algeria	707	134
Libva	26	Canada	573	109
Australia	18	Mexico	545	104
Venezuela	13	Australia	437	83
Mexico	13	South Africa	390	74
Pakistan	9	Russia	285	54
Canada	9	Brazil	245	47
Others	65	Others	1,535	292
Total	345	Total	7,795	1,481
Memo: conventional reserves	3,012	Memo: conventiona reserves	l 22,812	4,346

Note: 'Technically recoverable' resources are volumes that could be produced with current technology, but without taking account of prices and production costs. 'Economically recoverable' resources are volumes that can be profitably produced under current market conditions. *Sources:* US Energy Information Administration, *Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations Outside of the United States*, June 2013; and BP, *Statistical Review of World Energy*, June 2013.

However many countries may have difficulty fully exploiting these resources

- In the US, private landowners also own the rights to minerals (including oil and gas) beneath their land, which has provided a strong incentive for exploration for and exploitation of mineral resources since the landowners receive royalties
 - in almost all other countries rights to sub-surface minerals belong to the state (which receives any royalties from the exploitation of mineral resources)
 - Canada is a partial exception: land originally purchased from the Dominion Government prior to 1887, from the Hudson Bay Company prior to 1907, or from the Canadian Pacific Railway (CPR) prior to 1902, also carries rights to 'all mines and minerals' (other than precious metals): and the mineral rights acquired by CPR in the 19th and early 20th centuries (covering 9.6mn acres, mostly in Alberta) are now owned by EnCana Corporation, a private company
- Exploitation of tight oil and shale gas requires the use of horizontal drilling rigs, which as yet are not widely available outside the US, and other supporting contractors
- Government policies in some countries would need to be changed before widespread exploration and drilling for shale reserves could occur
 - for example, product price controls (as in Argentina) or excise taxes (as in Russia)
 - foreign (mainly US) companies whose technology and expertise may be crucial to the development of shale reserves will be apprehensive about possible expropriation
- Another key requirement for commercial exploitation of shale reserves is pre-existing gathering and pipeline infrastructure, which exists in much of the US but is far less common in other countries

Growth in oil supply has been outstripping demand growth over the past five years

Note: Difference between total consumption and production reflects production of liquids from other sources. Sources: BP, Statistical Review of World Energy 2013; US Energy Information Administration Monthly Energy Review (for OECD stocks).

Oil demand has fallen 8% in 'advanced' economies but risen 19% in 'developing' economies since 2007

Oil consumption

Note: Asian NIEs are Korea, Taiwan, Hong Kong and Singapore; other advanced economies are Australia, New Zealand, Norway, Switzerland and Israel; ASEAN-5 are Indonesia, the Philippines, Thailand, Malaysia and Vietnam; GCC are Saudi Arabia, the UAE, Qatar and Kuwait. *Sources:* BP, *Statistical Review of World Energy* 2013.

Saudi Arabia is trying to keep oil prices around \$100/ bbl balancing rising US output vs falling OPEC output

Oil production

Sources: BP, Statistical Review of World Energy 2013.

Oil prices are likely to be a little lower over the next few years

Sources: Thomson Reuters Datastream; US Energy Information Administration *Annual Energy Outlook 20113*; BofA Merrill Lynch Global Energy Research.

With demand from US electricity generators falling, North American coal is being diverted to China

Thermal coal prices

Sources: China National Bureau of Statistics; Thomson Reuters Datastream.

Most non-energy commodity prices also seem to be heading lower

Selected non-energy commodity prices

Shifting terms of trade will redistribute income from commodity exporters to commodity importers

Sources: National statistical authorities of countries shown; Thomson Reuters Datastream.

Important Disclosures

This document has been prepared by Saul Eslake on behalf of Corinna Economic Advisory Pty Ltd, ABN 165 668 058 69, whose registered office is located at Level 11, 114 William Street, Melbourne, Victoria 3000 Australia.

This document has been prepared for the use of the party or parties named on the first page hereof, and is not to be further circulated or distributed without permission.

This document does not purport to constitute investment advice. It should not be used or interpreted as an invitation or offer to engage in any kind of financial or other transaction, nor relied upon in order to undertake, or in the course of undertaking, any such transaction.

The information herein has been obtained from, and any opinions herein are based upon, sources believed reliable. The views expressed in this document accurately reflect the author's personal views, including those about any and all financial instruments referred to herein. Neither Saul Eslake nor Corinna Economic Advisory Pty Ltd however makes any representation as to its accuracy or completeness and the information should not be relied upon as such. All opinions and estimates herein reflect the author's judgement on the date of this document and are subject to change without notice. The author and Corinna Economic Advisory Pty Ltd expressly disclaim any responsibility, and shall not be liable, for any loss, damage, claim, liability, proceedings, cost or expense ("Liability") arising directly or indirectly (and whether in tort (including negligence), contract, equity or otherwise) out of or in connection with the contents of and/or any omissions from this communication except where a Liability is made non-excludable by legislation.

Any opinions expressed herein should not be attributed to any other organization with which Saul Eslake is affiliated.